A network graph is a chart that displays relations between elements (nodes) using simple links. Network graph allows us to visualize clusters and relationships between the nodes quickly; the chart is often used in industries such as life science, cybersecurity, intelligence, etc.
Creating a network graph is straightforward. Below figure shows five nodes and the relationship between them. Node 1 has a relationship with the nodes 3, 4, and 2. The node 5 also has a relationship with nodes 2 and 4, but not with node 3.
Visualize a network graph created using networkx.
Install the Python library networkx with pip install networkx.
Create random graph
import plotly.graph_objects as go
import networkx as nx
G = nx.random_geometric_graph(200, 0.125)
Create Edges
Add edges as disconnected lines in a single trace and nodes as a scatter trace
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = G.nodes[edge[0]]['pos']
x1, y1 = G.nodes[edge[1]]['pos']
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None)
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_x = []
node_y = []
for node in G.nodes():
x, y = G.nodes[node]['pos']
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
# colorscale options
#'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' |
#'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' |
#'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' |
colorscale='YlGnBu',
reversescale=True,
color=[],
size=10,
colorbar=dict(
thickness=15,
title='Node Connections',
xanchor='left',
titleside='right'
),
line_width=2
)
)
Color Node Points
Color node points by the number of connections.
Another option would be to size points by the number of connections i.e. node_trace.marker.size = node_adjacencies
node_adjacencies = []
node_text = []
for node, adjacencies in enumerate(G.adjacency()):
node_adjacencies.append(len(adjacencies[1]))
node_text.append('# of connections: '+str(len(adjacencies[1])))
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
Create Network Graph
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='<br>Network graph made with Python',
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="Python code: <a href='https://plotly.com/ipython-
notebooks/network-graphs/'> https://plotly.com/ipython-
notebooks/network-graphs/</a>",
showarrow=False,
xref="paper", yref="paper",
x=0.005, y=-0.002 ) ],
xaxis=dict(showgrid=False,
zeroline=False,
showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
fig.show()
Network graph made with python
Python code: https://plotly.com/ipython-notebooks/network-graphs/
Network graphs in Dash
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash dash-cytoscape, click "Download" to get the code and run python app.py.
from dash import Dash, html
import dash_cytoscape as cyto
app = Dash(__name__)
app.layout = html.Div([
html.P("Dash Cytoscape:"),
cyto.Cytoscape(
id='cytoscape',
elements=[
{'data': {'id': 'ca', 'label': 'Canada'}},
{'data': {'id': 'on', 'label': 'Ontario'}},
{'data': {'id': 'qc', 'label': 'Quebec'}},
{'data': {'source': 'ca', 'target': 'on'}},
{'data': {'source': 'ca', 'target': 'qc'}}
],
layout={'name': 'breadthfirst'},
style={'width': '400px', 'height': '500px'}
)
])
app.run_server(debug=True)
Resource: Plotly.com
The Tech Platform
Comments